Abstract

Self-driving cars are going to be the main future mode of transportation. However, such systems like, any other cyber-physical system, are vulnerable to attack vectors and uncertainties. As a response, resilience-based approaches are being developed. However, the approaches lack a sound attack model that recognizes the attack vectors and vulnerabilities such a system would have and that does a proper severity analysis of such attacks. Moreover, the existing attack models are too generic. Currently, the domain lacks such specific work pertaining to self-driving cars. Given the technology and architecture of self-driving cars, the field requires a domain-specific attack model. This paper gives a review of the attack models and proposes a domain-specific attack model for self-driving cars. The proposed attack model, severity-based analytical attack model for resilience (SAAMR), provides attack analysis based on existing models. Also, a domain-based severity score for attacks is calculated. Further, the attacks are classified using the decision-tree method and predictions of the type of attacks are given using long short-term memory network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.