Abstract

The mechanism of electron transfer (ET) from reduced pheophytin (Pheo−) to the primary stable photosynthetic acceptor, a quinone (Q) molecule, is addressed by using high-level ab initio computations and realistic molecular models. The results reveal that the ET process involving the (Pheo−+Q) and (Pheo+Q−) oxidation states can be seen essentially as an ultrafast radiationless transition between the two hypersurfaces taking place via conical intersections (CIs) and is favoured when the topology of the interacting moieties makes possible some overlap between the lowest occupied molecular orbitals (LUMO) of the two systems. Thus, it is anticipated that large scale motions, which are difficult to monitor experimentally, may actually occur in the photosynthetic reaction centers of bacteria, algae, and higher plants, to fulfil the observed ultrafast ET processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.