Abstract
AbstractDirect CO2 electrolysis in seawater enables the simultaneous conversion of CO2 into CO and the chlorine ions into Cl2, further meeting downstream industry needs such as phosgene synthesis and also facilitating the net consumption of CO2. As a result, the direct implementation of CO2 electrolysis in seawater is urgently required. Herein, a CoPc molecule‐implanted graphitic carbon nitride nanosheets (CoPc/g‐C3N4) electrocatalyst is prepared via a simple mechanochemistry method. The CoPc/g‐C3N4 with a negatively charged surface and preferential adsorption capability for Na+ can achieve appreciable faradaic efficiency (FE, 89.5%) toward CO with a current density of 16.0 mA cm−2 in natural seawater and also realize long‐term operation for 25 h in simulated seawater. Process monitoring further reveals that the chlorine ions in NaCl electrolyte can modulate the reaction microenvironment around the anode, which in turn has positive effects on the CO2RR in cathode. The CO2RR overall splitting in the simulated seawater exhibits a maximum FE of 98.1% towards CO at cell voltage of 3 V. This work describes the development of a carbon‐coupled CoPc molecular catalyst that can drive the CO2 electrolysis in simulated seawater and provides a promising and energy‐saving coupled reaction system for direct coproduction of CO and Cl2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.