Abstract

Ion-specific effects on the aqueous solubilities of biomolecules are relevant in many areas of biochemistry and life sciences. However, a general and well-supported molecular picture of the phenomena has not yet been established. In order to contribute to the understanding of the molecular-level interactions governing the behavior of biocompounds in aqueous saline environments, classical molecular dynamics simulations were performed for aqueous solutions of four amino acids (alanine, valine, isoleucine, and 2-aminodecanoic acid), taken as model systems, in the presence of a series of inorganic salts. The MD results reported here provide support for a molecular picture of the salting-in/salting-out mechanism based on the presence/absence of interactions between the anions and the nonpolar moieties of the amino acids. These results are in good qualitative agreement with experimental solubilities and allow for a theoretical interpretation of the available data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.