Abstract

Iminoxy radicals (R1R2C═N—O•) possess an inherent ability to exist as E and Z isomers. Although isotropic hyperfine couplings for the species with R1 = H allow one to distinguish between E and Z, unequivocal assignment of the parameters observed in the EPR spectra of the radicals without the hydrogen atom at the azomethine carbon to the right isomer is not a simple task. The iminoxyl derived from o-fluoroacetophenone oxime (R1 = CH3 and R2 = o-FC6H5) appears to be a case in point. Moreover, for its two isomers the rotation of the o-FC6H5 group brings into existence the syn and anti conformers, depending on the mutual orientation of the F atom and C═N—O• group, making a description of hyperfine couplings to structure even more challenging. To accomplish this, a vast array of theoretical methods (DFT, OO-SCS-MP2, QCISD) was used to calculate the isotropic hyperfine couplings. The comparison between experimental and theoretical values revealed that the E isomer is the dominant radical form, for which a fast interconversion between anti and syn conformers is expected. In addition, the origin of the significant AF increase with solvent polarity was analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call