Abstract

Two new cyclotriphosphazene ligands with pendant 2,2':6',2″-terpyridine (Terpy) moieties, namely, (pentaphenoxy){4-[2,6-bis(2-pyridyl)]pyridoxy}cyclotriphosphazene (L(1)), (pentaphenoxy){4-[2,6-terpyridin-4-yl]phenoxy}cyclotriphosphazene (L(2)), and their respective polymeric analogues, L(1P) and L(2P), were synthesized. These ligands were used to form iron(II) complexes with an Fe(II)Terpy(2) core. Variable-temperature resonance Raman, UV-visible, and Mössbauer spectroscopies with magnetic measurements aided by density functional theory calculations were used to understand the physical characteristics of the complexes. By a comparison of measurements, the polymers were shown to behave in the same way as the cyclotriphosphazene analogues. The results showed that spin crossover (SCO) can be induced to start at high temperatures by extending the spacer length of the ligand to that in L(2) and L(2P); this combination provides a route to forming a malleable SCO material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.