Abstract

The bottom-up approach to directly synthesizing low-dimensional materials with outstanding performance has extended the material basis for the next generation integrated circuit industry. All the low-dimensional semiconductors, metals, dielectrics, and their heterojunctions are very promising bricks to build faster and more efficient chips because of their atomically smooth surface and interfaces. The greatest challenge in the synthesis of nanomaterials is how to precisely control the structure, crystalline orientation, defects, dimensions, etc. In past decades, both the methodology and the mechanism of synthesis have been systematically investigated to improve the controllability. However, few studies focused on sensing the synthesis processes in situ and responding to the synthesis immediately. Here, we propose the concept of intelligent synthesis in which the final product can be automatically fine-controlled by a closed loop including in situ monitoring and real-time interventions. As a model system, a high-temperature-tolerant circuit is fabricated on the single-walled carbon nanotube (SWCNT) growth substrate for sensing and responding to the synthesis processes. As a result, either highly pure semiconducting (s-) SWCNT arrays or metallic-semiconducting (m-s) junction arrays with different junction positions is simply synthesized by programming the responding signal. The intelligent synthesis shows much higher efficiency and controllability compared to conventional methods and will lead to the next leap in nanotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.