Abstract
Among autonomous surface vehicles, sailing robotics could be a promising technology for long-term missions and semipersistent presence in the oceans. Autonomy of such vehicles in terms of energy will be achieved by renewable solar and wind power sources. Autonomy in terms of sailing decision will be achieved by innovative perception and navigation modules. The main contribution of this paper is to propose a complete hardware and software architecture for an autonomous sailing robot. The hardware architecture includes a comprehensive set of sensors and actuators as well as a solar panel and a wind turbine. For obstacle detection, a segmentation is performed on data coming from an omnidirectional camera coupled with an inertial measurement unit and a sonar. For navigation and control of the vehicle, a potential-based reactive path-planning approach is proposed. The specific sailboat kinematic constraints are turned into virtual obstacles to compute a feasible and optimal heading in terms of cost of gybe and tack maneuver as well as safety relative to obstacle danger. Finally, field test experiments are presented to validate the various components of the system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.