Abstract

Crop surface models (CSMs) representing plant height above ground level are a useful tool for monitoring in-field crop growth variability and enabling precision agriculture applications. A semiautomated system for generating CSMs was implemented. It combines an Android application running on a set of smart cameras for image acquisition and transmission and a set of Python scripts automating the structure-from-motion (SfM) software package Agisoft Photoscan and ArcGIS. Only ground-control-point (GCP) marking was performed manually. This system was set up on a barley field experiment with nine different barley cultivars in the growing period of 2014. Images were acquired three times a day for a period of two months. CSMs were successfully generated for 95 out of 98 acquisitions between May 2 and June 30. The best linear regressions of the CSM-derived plot-wise averaged plant-heights compared to manual plant height measurements taken at four dates resulted in a coefficient of determination R2 of 0.87 and a root-mean-square error (RMSE) of 0.08 m, with Willmott’s refined index of model performance dr equaling 0.78. In total, 103 mean plot heights were used in the regression based on the noon acquisition time. The presented system succeeded in semiautomatedly monitoring crop height on a plot scale to field scale.

Highlights

  • Monitoring growth, vitality, and stress of crops is a key task in precision agriculture.[1]

  • PhotoScan matches features across the images by detecting points that are stable under viewpoint and lighting variations and generates a descriptor for each point from its local neighborhood

  • Small day to day variations in plant height could be explained by several factors: variations could be explained by the accuracy of the presented approach, representing noise in the measurement

Read more

Summary

Introduction

Monitoring growth, vitality, and stress of crops is a key task in precision agriculture.[1] This can be realized by nondestructive monitoring of structural crop parameters such as plant height and growth as well as by monitoring physiological parameters such as chlorophyll or water content. Remote sensing-based crop monitoring is a very wide research field.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.