Abstract

We present here the characterization of the structural, dynamics, and energetics of properties of the urea-denatured state of ubiquitin, a small prototypical soluble protein. By combining state-of-the-art molecular dynamics simulations with NMR and small-angle X-ray scattering data, we were able to: (i) define the unfolded state ensemble, (ii) understand the energetics stabilizing unfolded structures in urea, (iii) describe the dedifferential nature of the interactions of the fully unfolded proteins with urea and water, and (iv) characterize the early stages of protein refolding when chemically denatured proteins are transferred to native conditions. The results presented herein are unique in providing a complete picture of the chemically unfolded state of proteins and contribute to deciphering the mechanisms that stabilize the native state of proteins, as well as those that maintain them unfolded in the presence of urea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.