Abstract

A new generation of extracorporeal artificial organ support technologies, collectively known as extracorporeal life support (ECLS) devices, is being developed for diverse applications to include acute support for trauma-induced organ failure, transitional support for bridge to organ transplant, and terminal support for chronic diseases. Across applications, one significant complication limits the use of these life-saving devices: thrombosis, bleeding, and inflammation caused by foreign surface-induced blood interactions. To address this challenge, transdisciplinary scientists and clinicians look to the vascular endothelium as inspiration for development of new biocompatible materials for ECLS. Here, we describe clinically approved and new investigational biomaterial solutions for thrombosis, such as immobilized heparin, nitric oxide-functionalized polymers, "slippery" nonadhesive coatings, and surface endothelialization. We describe how hemocompatible materials could abrogate the use of anticoagulant drugs during ECLS and by doing so radically change treatments in critical care. Additionally, we examine several special considerations for the design of biomaterials for ECLS, including: (1) preserving function of the artificial organ, (2) longevity of use, and (3) multifaceted approaches for the diversity of device functions and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.