Abstract
We present an innovative approach for a Cybersecurity Solution based on the Intrusion Detection System to detect malicious activity targeting the Distributed Network Protocol (DNP3) layers in the Supervisory Control and Data Acquisition (SCADA) systems. As Information and Communication Technology is connected to the grid, it is subjected to both physical and cyber-attacks because of the interaction between industrial control systems and the outside Internet environment using IoT technology. Often, cyber-attacks lead to multiple risks that affect infrastructure and business continuity; furthermore, in some cases, human beings are also affected. Because of the traditional peculiarities of process systems, such as insecure real-time protocols, end-to-end general-purpose ICT security mechanisms are not able to fully secure communication in SCADA systems. In this paper, we present a novel method based on the DNP3 vulnerability assessment and attack model in different layers, with feature selection using Machine Learning from parsed DNP3 protocol with additional data including malware samples. Moreover, we developed a cyber-attack algorithm that included a classification and visualization process. Finally, the results of the experimental implementation show that our proposed Cybersecurity Solution based on IDS was able to detect attacks in real time in an IoT-based Smart Grid communication environment.
Highlights
To provide new services and offer new features with excellent quality, modern critical infrastructure such as power plants, smart grids, and water plants nowadays use ICT technologies [1]
In this paper we focus onon this protocol due totoitsitsimportance smart grids
This paper discussed cybersecurity solutions based on the Intrusion Detection System in the
Summary
To provide new services and offer new features with excellent quality, modern critical infrastructure such as power plants, smart grids, and water plants nowadays use ICT technologies [1]. Even if ICT technologies have made possible the provision of new services and new features, the types of connectivity have opened the door to a new wave of possible threats to critical installations. The SCADA acronym stands for Supervisor Control and Data Acquisition, and it allows the supervision and control of plants either remotely or locally using hardware and software dedicated to that system. With this system, the system analyzes, collects and processes data in real time
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.