Abstract

Lung nodule progression assessment from medical imaging is a critical biomarker for assessing the course of the disease or the patient's response to therapy. CT images are routinely used to identify the location and size and rack the progression of lung nodules. However, nodule segmentation is challenging and prone to error, due to the irregular nodule boundaries, therefore introducing error in the lung nodule quantification process. Here, we describe the development and evaluation of a feature-based affine image registration framework that enables us to register two time point thoracic CT images as a means to account for the back-ground lung tissue deformation, then use digital subtraction images to assess tumor progression/regression. We have demonstrated this method on twelve de-identified patient datasets and showed that the proposed method yielded a better than 1.5mm registration accuracy vis-à-vis the widely accepted non-rigid image registration techniques. To demonstrate the potential clinical value of our described technique, we conducted a study in which our collaborating clinician was asked to provide an assessment of nodule progression/regression using the digital subtraction images post-registration. This assessment was consistent, yet provided more confidence, than the traditional lung nodule tracking based on visual analysis of the CT images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.