Abstract
Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first‐principles calculations, a strategy to mitigate this problem by decorating undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter‐deposited thin films of MnO2 and Ti–MnO2. A combination of electrochemical measurements, quartz crystal microbalance, inductively coupled plasma mass spectrometry measurements, and X‐ray photoelectron spectroscopy is performed. Small amounts of TiO2 incorporated into MnO2 lead to a moderate improvement in stability, with only a small decrease in activity. This study opens up the possibility of engineering surface properties of catalysts so that active and abundant nonprecious metal oxides can be used in acid electrolytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.