Abstract

The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MSx Ny (M = Fe, Co, and Ni, x/y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder-type, highly crystalline coordination polymers as model carbon-rich electrocatalysts for H2 generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad-/desorption on MSx Ny catalysts, leading to enhanced HER kinetics. Toward the activity origin of MS2 N2 , the experimental and theoretical results disclose that the metal atoms are preferentially protonated and then the production of H2 is favored on the MN active sites after a heterocoupling step involving a N-bound proton and a metal-bound hydride. Moreover, the tuning of the metal centers in MS2 N2 leads to the HER performance in the order of FeS2 N2 > CoS2 N2 > NiS2 N2 . Thus, the understanding of the catalytic active sites provides strategies for the enhancement of the electrocatalytic activity by tailoring the ligands and metal centers to the desired function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.