Abstract

A multiscale scheme (MLMS: Multi-Level Multi-Scale) to predict the ion mobility (μ) of amorphous organic semiconductors is proposed, which was successfully applied to the hole mobility predictions of 14 organic systems. An inverse relationship between μ and reorganization energy is observed due to local polaronic distortions. Another moderate inverse correlation between μ and distribution of site energy change exists, representing the effects of geometric flexibility. The former and the latter represent the intramolecular and intermolecular geometric effects, respectively. In addition, a linear correlation between transfer coupling and μ is observed, showing the importance of orbital overlaps between monomers. Especially, the highest hole mobility of C6-2TTN is due to its large transfer coupling. On the other hand, another high hole mobility of CBP turned out to come from the high first neighbor density (ρFND) of its first self-solvation, emphasizing the proper description of amorphous structural configurations with a sufficiently large number of monomers. In general, systems with either unusually high transfer coupling or high first neighbor density can potentially have high μ regardless of geometric effects. Especially, the newly suggested design parameter, ρFND, is pointing to a new direction as opposed to the traditional π-conjugation strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.