Abstract

ObjectiveTo investigate whether a three-dimensional (3-D) camera (Microsoft Kinect) and a smartphone can be used to accurately quantify the joint angular velocity and range of motion (ROM) compared to a criterion-standard 3-D motion analysis system during a lower limb spasticity assessment. DesignObservational, criterion-standard comparison study. SettingLarge rehabilitation center. ParticipantsA convenience sample of 35 controls, 35 patients with a neurologic condition, and 34 rehabilitation professionals (physiotherapists and rehabilitation doctors) participated (N=104). InterventionsNot applicable. Main Outcome MeasuresThe Modified Tardieu Scale was used to assess spasticity of the quadriceps, hamstrings, soleus, and gastrocnemius. Data for each trial were collected concurrently using the criterion-standard Optitrack 3-D motion analysis (3DMA) system, Microsoft Kinect, and a smartphone. Each healthy control participant was assessed by 1 health professional and each patient with a neurological condition was assessed by 3 health professionals. Spearman correlation coefficient and intraclass correlation coefficient with 95% confidence intervals were used to report the strength of the relationships investigated. ResultsThe smartphone and Microsoft Kinect demonstrated excellent concurrent validity with the 3DMA system. Overall, 74.8% of the relationships investigated demonstrated a very strong (≥0.80) correlation across all of the testing parameters. The Microsoft Kinect was superior to the smartphone for measuring joint start and end angle, the smartphone was superior for measuring joint angular velocity, and the 2 systems were comparable for measuring total joint ROM. ConclusionsThese findings provide preliminary evidence that user-friendly, low-cost technologies can be used to facilitate accurate measurements of joint angular velocity and angles during a lower limb spasticity assessment in a clinical setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.