Abstract
Accurate myocardial segmentation is crucial in the diagnosis and treatment of myocardial infarction (MI), especially in Late Gadolinium Enhancement (LGE) cardiac magnetic resonance (CMR) images, where the infarcted myocardium exhibits a greater brightness. However, segmentation annotations for LGE images are usually not available. Although knowledge gained from CMR images of other modalities with ample annotations, such as balanced-Steady State Free Precession (bSSFP), can be transferred to the LGE images, the difference in image distribution between the two modalities (i.e., domain shift) usually results in a significant degradation in model performance. To alleviate this, an end-to-end Variational autoencoder based feature Alignment Module Combining Explicit and Implicit features (VAMCEI) is proposed. We first re-derive the Kullback-Leibler (KL) divergence between the posterior distributions of the two domains as a measure of the global distribution distance. Second, we calculate the prototype contrastive loss between the two domains, bringing closer the prototypes of the same category across domains and pushing away the prototypes of different categories within or across domains. Finally, a domain discriminator is added to the output space, which indirectly aligns the feature distribution and forces the extracted features to be more favorable for segmentation. In addition, by combining CycleGAN and VAMCEI, we propose a more refined multi-stage unsupervised domain adaptation (UDA) framework for myocardial structure segmentation. We conduct extensive experiments on the MSCMRSeg 2019, MyoPS 2020 and MM-WHS 2017 datasets. The experimental results demonstrate that our framework achieves superior performances than state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.