Abstract

Cardiovascular diseases remain as the most common cause of death worldwide. Remotely manipulated robotic systems are utilized to perform minimally invasive endovascular interventions. The main benefits of this methodology include reduced recovery time, improvement of clinical skills and procedural facilitation. Currently, robotic assistance, precision, and stability of instrument manipulation are compensated by the lack of haptic feedback and an excessive amount of radiation to the patient. This paper proposes a novel master-slave robotic platform that aims to bring the haptic feedback benefit on the master side, providing an intuitive user interface, and clinical familiar workflow. The slave robot is capable of manipulating conventional catheters and guidewires in multi-modal imaging environments. The system has been initially tested in a phantom cannulation study under fluoroscopic guidance, evaluating its reliability and procedural protocol. As the slave robot has been entirely produced by additive manufacturing and using pneumatic actuation, MR compatibility is enabled and was evaluated in a preliminary study. Results of both studies strongly support the applicability of the robot in different imaging environments and prospective clinical translation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call