Abstract

In the field of speaker verification (SV) it is nowadays feasible and relatively easy to create a synthetic voice to deceive a speech driven biometric access system. This paper presents a synthetic speech detector that can be connected at the front-end or at the back-end of a standard SV system, and that will protect it from spoofing attacks coming from state-of-the-art statistical Text to Speech (TTS) systems. The system described is a Gaussian Mixture Model (GMM) based binary classifier that uses natural and copy-synthesized signals obtained from the Wall Street Journal database to train the system models. Three different state-of-the-art vocoders are chosen and modeled using two sets of acoustic parameters: 1) relative phase shift and 2) canonical Mel Frequency Cepstral Coefficients (MFCC) parameters, as baseline. The vocoder dependency of the system and multivocoder modeling features are thoroughly studied. Additional phase-aware vocoders are also tested. Several experiments are carried out, showing that the phase-based parameters perform better and are able to cope with new unknown attacks. The final evaluations, testing synthetic TTS signals obtained from the Blizzard challenge, validate our proposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.