Abstract

The photodissociation of thioformaldehyde is an archetypal system for the study of competition between internal conversion and intersystem crossing, which involves its two singlet states (S0 and S1) and two triplet states (T1 and T2). In order to perform accurate dynamic simulations, either quantum or quasi-classical, it is essential to construct an analytical representation for all necessary electronic structure data. In this work, a diabatic potential energy matrix (DPEM), Hd, for the two singlet states (S0 and S1) is reported. The analytical form of DPEM is symmetrized and constructed to reproduce adiabatic energies, energy gradients, and derivative couplings obtained from high-level multireference configuration interaction wave functions. The Hd is fully saturated in the molecular configuration space with a trajectory-guided point sampling approach. This Hd can provide the accurate description of the photodissociation of thioformaldehyde on its singlet states and is also a necessary part for incorporating the spin-orbit couplings into a unified diabatic framework. Preliminary quasi-classical trajectory simulations show that a roaming mechanism also exists in the molecular dissociation channel of thioformaldehyde.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call