Abstract
A fibration-like structure called a hyperpencil is defined on a smooth, closed 2n-manifold X, generalizing a linear system of curves on an algebraic variety. A deformation class of hyperpencils is shown to determine an isotopy class of symplectic structures on X. This provides an inverse to Donaldson's program for constructing linear systems on symplectic manifolds. In dimensions ≤ 6, work of Donaldson and Auroux provides hyperpencils on any symplectic manifold, and the author conjectures that this extends to arbitrary dimensions. In dimensions where this holds, the set of deformation classes of hyperpencils canonically maps onto the set of isotopy classes of rational symplectic forms up to positive scale, topologically determining a dense subset of all symplectic forms up to an equivalence relation on hyperpencils. In particular, the existence of a hyperpencil topologically characterizes those manifolds in dimensions ≤ 6 (and perhaps in general) that admit symplectic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.