Abstract

Klinkenberg permeability is an important parameter in tight gas reservoirs. There are conventional methods for determining it, but these methods depend on core permeability. Cores are few in number, but well logs are usually accessible for all wells and provide continuous information. In this regard, regression methods have been used to achieve reliable relations between log readings and Klinkenberg permeability. In this work, multiple linear regression, tree boost, general regression neural network, and support vector machines have been used to predict the Klinkenberg permeability of Mesaverde tight gas sandstones located in Washakie basin. The results show that all the four methods have the acceptable capability to predict Klinkenberg permeability, but support vector machine models exhibit better results. The errors of models were measured by calculating three error indexes, namely the correlation coefficient, the average absolute error, and the standard error of the mean. The analyses of errors show that support vector machine models perform better than the other models, but there are some exceptions. Support vector machine is a relatively new intelligence method with great capabilities in regression and classification tasks. Herein, support vector machine was used to predict the Klinkenberg permeability of a tight gas reservoir and the performances of four regression techniques were compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.