Abstract

The third-order elastic modulus of α-Fe were calculated based on the computation of lattice sums. The lattice sums were determined using an integer rational basis of invariants composed by vectors connecting equilibrium atomic positions in the crystal lattice. Irreducible interactions within clusters consisting of atomic pairs and triplets were taken into account in performing the calculations. Comparison with experimental data showed that the potential can be written in the form of \(\varepsilon _9 = - \sum\nolimits_{i,k} {A_{19} r_{ik}^{ - 6} } + \sum\nolimits_{i,k} {A_{29} r_{ik}^{ - 12} + \sum\nolimits_{i,k,l} {Q_9 I_9^{ - 1} } }\), where \(I_9 = \vec r_{ik}^2 \left[ {\left( {\vec r_{ik} \vec r_{kl} } \right)^2 + \left( {\vec r_{li} \vec r_{ik} } \right)^2 } \right] + \vec r_{kl}^2 \left[ {\left( {\vec r_{ik} \vec r_{kl} } \right)^2 + \left( {\vec r_{kl} \vec r_{li} } \right)^2 } \right] + \vec r_{li}^2 \left[ {\left( {\vec r_{li} \vec r_{ik} } \right)^2 + \left( {\vec r_{kl} \vec r_{li} } \right)^2 } \right]\). If the values of \(\vec r_{ik}\) are scaled in half-lattice constant units, then \(A_{19} = 1.22\left\lfloor {\tau ^9 } \right\rfloor GPa, A_{29} = 5.07 \times 10^2 \left\lfloor {\tau ^{15} } \right\rfloor GPa, Q_9 = 5.31\left\lfloor {\tau ^9 } \right\rfloor GPa\), and τ = 1.26 A. It is shown that the condition of thermodynamic stability of a crystal requires that we allow for irreducible interactions in atom triplets in at least four coordination spheres. The analytical expressions for the lattice sums determining the contributions from irreducible interactions in the atom triplets to the second- and third-order elastic moduli of cubic crystals in the case of interactions determined by I9 are presented in the appendix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.