Abstract

Rapid single flux quantum (RSFQ) digital circuits have reached the level of medium- to large-scale of integration. At this level, existing design methodologies, developed specifically for RSFQ circuits, have become computationally inefficient. Applying mature semiconductor methodologies to the design of RSFQ circuits, one encounters substantial difficulties originating from the differences between both technologies. In this paper, a new design methodology aimed at large-scale RSFQ circuits is proposed. This methodology is based on a semiconductor semicustom design approach. An established design methodology for small-stale RSFQ digital circuits, based on circuit (junction-level) simulation and device parameter optimization, is used for the design of basic RSFQ cells. A library composed of about 20 basic RSFQ cells has been developed based on this approach. A novel design methodology for large-scale circuits, presented in this paper, is based on logic (gate-level) simulation and timing optimization. This methodology has been implemented around the Cadence integrated design environment and used successfully at the University of Rochester for the design of two large-scale digital circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.