Abstract
Today’s Network Operation Centres (NOC) consist of teams of network professionals responsible for monitoring and taking actions for their network’s health. Most of these NOC actions are relatively complex and executed manually; only the simplest tasks can be automated with rules-based software. But today’s networks are getting larger and more complex. Therefore, deciding what action to take in the face of non-trivial problems has essentially become an art that depends on collective human intelligence of NOC technicians, specialized support teams organized by technology domains, and vendors’ technical support. This model is getting increasingly expensive and inefficient, and the automation of all or at least some NOC tasks is now considered a desirable step towards autonomous and self-healing networks. In this article, we investigate whether an autonomous NOC can achieve superintelligence; i.e., it can recommend or take actions that lead to better results than those achieved by the collective human intelligence, in this case rules designed by human experts. Our investigation is inspired by the superintelligence achieved in computer games recently. Specifically, we build an Action Recommendation Engine based on Reinforcement Learning, a type of Artificial Intelligence method, and we train it with expert rules and lets it explore actions by itself. We then show that it can learn new and more efficient strategies that outperform expert rules designed by humans. This can be used in face of network problems to either quickly recommend actions to NOC technicians or autonomously take actions for fast recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.