Abstract
In this paper, we model the variation of the bibliometric measure differences across academic fields in order to quantify the sources of these discrepancies. Since the bibliometric measure is based on the amount of published and cited papers, we anticipate that the mean number of references by published paper is the predominant parameter behind the discrepancies of impact factor scores in some academic fields. We introduce here a bias-free model, based on normalized variables with restricted cross-discipline discrepancies, that is robust against fraud and scams. The model is then submitted to an intensive numerical test using a Monte Carlo simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.