Abstract

The development of the most recent generation of molecular mechanics force fields promises an increasingly predictive understanding of the protein dynamics-function relationship. Based on extensive validation against various types of experimental data, the AMBER force field ff99SB was benchmarked in recent years as a favorable force field for protein simulations. Recent improvements of the side chain and backbone potentials, made by different groups, led to the ff99SB-ILDN and ff99SBnmr1 force fields, respectively. The combination of these potentials into a unified force field, termed ff99SBnmr1-ILDN, was used in this study to perform a microsecond time scale molecular dynamics simulation of free ubiquitin in explicit solvent for validation against an extensive set of experimental NMR methyl group residual dipolar couplings. Our results show a high level of consistency between the experimental data and the values predicted from the molecular dynamics trajectory reflecting a systematically improved performance of ff99SBnmr1-ILDN over the original ff99SB force field. Moreover, the unconstrained ff99SBnmr1-ILDN MD ensemble achieves a similar level of agreement as the recently introduced EROS ensemble, which was constructed based on a large body of NMR data as constraints, including the methyl residual dipolar couplings. This suggests that ff99SBnmr1-ILDN provides a high-quality representation of the motions of methyl-bearing protein side chains, which are sensitive probes of protein-protein and protein-ligand interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.