Abstract

T cells circulate in blood and the lymphatic system, continually engaging cells through transient non-specific adhesion. In a normally functioning immune system, these interactions permit sufficient time for T-cell receptors (TCRs) to sample major histocompatibility complex (MHC)-peptide complexes for the presence of foreign antigen, with detection of the latter to some extent being triggered by a longer dwell time of the receptor on the complex. Precisely how this incremental stability, which may be relatively small, leads to activation is unclear, but it appears to be related to diffusion-mediated formation of ternary complex dimers. The formation of stable dimers can explain the high sensitivity of the response, but leaves a number of questions unaddressed, including the following: i) How can high sensitivity be reconciled with high specificity, and how can a short TCR dwell time be reconciled with a comparably short time for ternary complex pair formation? ii) What is the nature of the early signals on the plasma membrane that determine alternative responses e.g. proliferation at one extreme and apoptosis at the other? iii) What are the cell-surface correlates of biphasic dose response functions i.e. of responses that peak as a function of dose and then descend? This paper has two loosely coupled goals. One is to review and assess the mathematical and computational methods available for analyzing reactions with and between mobile membrane-bound receptors. These methods range from phenomenological to mechanistic, the latter being based on the details of atomic structure. The other is to apply these methods to address biological questions, such as those raised above, part of whose answer may lie in the kinetic competition between alternative reaction paths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.