Abstract

A Ru(II) complex having tris(2-pyridylmethl)amine (TPA) and 2,2'-bipyridine (bpy), [Ru(TPA)(bpy)]X(2) (X = ClO(4), PF(6)), exhibited a severe distortion of the coordination of the axial pyridine moiety of TPA due to steric hindrance. The complex showed interesting dissociation-binding behavior of the axial pyridine arm to form a solvent adduct with TPA ligation in a unique meridional tridentate fashion. The complex undergoes thermal dissociation to form solvent-coordinated species via an S(N)2-like mechanism with activation energy of 117 kJ/mol. In contrast, the complex showed reversible photochemical dissociation and rebinding via an S(N)1-like mechanism by MLCT irradiation. The photochemical dissociation was accelerated approximately 200-fold faster than the thermal process. The dissociation process involves selective binding behavior toward external ligands (solvents) with pi-acceptor character, which is indispensable, and no sigma-donating molecules could bind to the Ru(II) center. The guest molecule can be released upon photoirradiation after its thermal binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.