Abstract

Modeling Instruction (MI) for University Physics is a curricular and pedagogical approach to active learning in introductory physics. A basic tenet of science is that it is a model-driven endeavor that involves building models, then validating, deploying, and ultimately revising them in an iterative fashion. MI was developed to provide students a facsimile in the university classroom of this foundational scientific practice. As a curriculum, MI employs conceptual scientific models as the basis for the course content, and thus learning in a MI classroom involves students appropriating scientific models for their own use. Over the last 10 years, substantial evidence has accumulated supporting MI's efficacy, including gains in conceptual understanding, odds of success, attitudes toward learning, self-efficacy, and social networks centered around physics learning. However, we still do not fully understand the mechanisms of how students learn physics and develop mental models of physical phenomena. Herein, we explore the hypothesis that the MI curriculum and pedagogy promotes student engagement via conceptual model building. This emphasis on conceptual model building, in turn, leads to improved knowledge organization and problem solving abilities that manifest as quantifiable functional brain changes that can be assessed with functional magnetic resonance imaging (fMRI). We conducted a neuroeducation study wherein students completed a physics reasoning task while undergoing fMRI scanning before (pre) and after (post) completing a MI introductory physics course. Preliminary results indicated that performance of the physics reasoning task was linked with increased brain activity notably in lateral prefrontal and parietal cortices that previously have been associated with attention, working memory, and problem solving, and are collectively referred to as the central executive network. Critically, assessment of changes in brain activity during the physics reasoning task from pre- vs. post-instruction identified increased activity after the course notably in the posterior cingulate cortex (a brain region previously linked with episodic memory and self-referential thought) and in the frontal poles (regions linked with learning). These preliminary outcomes highlight brain regions linked with physics reasoning and, critically, suggest that brain activity during physics reasoning is modifiable by thoughtfully designed curriculum and pedagogy.

Highlights

  • Active learning is neither a curriculum nor a pedagogy

  • Follow up correlation analysis between the left posterior cingulate cortex (PCC), left angular gyrus, left orbital frontal pole, and left DLPFC and accuracy on the Force Concept Inventory (FCI) yielded no significant correlation. This neuroeducational study represents an initial effort to understand how physics reasoning may translate to the level of brain function assessed by functional magnetic resonance imaging (fMRI) and how instruction brings about changes in brain activity

  • We observed that the physics reasoning task (FCI > Control questions) was associated with increased brain activity notably in lateral prefrontal and parietal regions

Read more

Summary

Introduction

Active learning is neither a curriculum nor a pedagogy. Active learning is a class of pedagogies and curriculum materials that strive to more fully engage students and promote critical thinking about course material. While lectures can be interesting, and some students clearly have been trained to become engaged during lectures (Schwartz and Bransford, 1998), for the majority of students, lectures are passive activities. This mismatch between the ways that students learn and the way many classes are taught is the primary motivation for the transformation of STEM instruction. The evidence is overwhelming; students learn more and are more likely to succeed in active learning settings (Freeman et al, 2014)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.