Abstract

Large-scale blackouts and extreme weather events in recent decades raise the concern for improving the resilience of electric power infrastructures. Distribution service restoration (DSR), a fundamental application in outage management systems, provides restoration solutions for system operators when power outages happen. As distribution generators (DGs) and remotely controllable devices are increasingly installed in distribution systems, an advanced DSR framework is needed to perform optimally coordinated restoration that can achieve maximal restoration performance. This paper introduces a DSR modeling framework, which can generate optimal switching sequences and estimated time of restoration in the presence of remotely controllable switches, manually operated switches, and dispatchable DGs. Two mathematical models, a variable time step model and a fixed time step model, are presented and compared. The proposed models are formulated as a mixed-integer linear programming model, and their effectiveness is evaluated via the IEEE 123 node test feeder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.