Abstract

Abstract In this article, the merits of a thermo-mechanical framework to estimate properties of high-strength concrete are evaluated for potential standardization as a test method. Previous work conducted by the authors was summarized to show the individual advancements toward development of a laboratory testing framework. Most notably, laboratory-based curing protocols have been shown to produce temperature profiles that were similar to mass placements and achieving peak temperatures that were within 2°C of peak temperatures recorded in a mass high-strength concrete placement. Additionally, current testing methods to determine thermo-mechanical properties of mass concrete placements were reviewed, and a clear disconnect was noticed between methods that are predictive as well as a direct measure of mechanical properties. Based on this review of literature and the advancements summarized by the authors, a testing framework is proposed that takes the first steps toward filling this gap in literature of creating a predictive testing protocol that is also a direct measurement of mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.