Abstract
The learning style is a vital learner's characteristic that must be considered while recommending learning materials. In this paper we have proposed an approach to identify learning styles automatically. The first step of the proposed approach aims to preprocess the data extracted from the log file of the E-learning environment and capture the learners' sequences. The captured learners' sequences were given as an input to the K-means clustering algorithm to group them into sixteen clusters according to the FSLSM. Then the naive Bayes classifier was used to predict the learning style of a student in real time. To perform our approach, we used a real dataset extracted from an e-learning system's log file, and in order to evaluate the performance of the used classifier, the confusion matrix method was used. The obtained results demonstrate that our approach yields excellent results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computing Science and Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.