Abstract

Self-trapped excitons (STEs) have recently been observed in several metal halide perovskites (MHPs), especially in low-dimensional ones. Despite studies that have shown that factors like dopant, chemical composition, lattice distortion, and structural and electronic dimensionality may all affect the self-trapping of excitons, a general understanding of their mechanism of formation in MHPs is lacking. Here, we study the intrinsic and defect-induced self-trapping of excitons in three-, two-, and one-dimensional MHPs. We find that whether the free excitons could be trapped is simply determined by the competition of the energy-gap decrease and deformation-energy increase along with the lattice distortion. Both introducing halogen defects into the lattice and decreasing the dimensionality can tip the balance between them and thus facilitate the self-trapping of free excitons. This general picture of the mechanism of formation of STEs provides important insights into the design and development of high-performance white-light devices and solar cells with MHPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.