Abstract
Speckle correlation-based scattering imaging is an ingenious field, as it allows for the efficient reconstruction of object images using computational techniques in a simple setup. However, this method typically necessitates high-contrast speckle images captured in a darkroom environment, restricting its applicability to specific scenarios. Here, we present a fast and non-darkroom imaging framework, namely FNDI, for reconstructing objects through scattering media under ambient light interference. Specifically, a speckle illumination model is established guided by the total variational Retinex (TV-Retinex) theory, and the speckle illumination component is adjusted to obtain an enhanced speckle with significantly improved contrast. Then, a modified Fienup algorithm with the iteration-driven shrinkwrap (IDS) strategy is employed to rapidly reconstruct the object image through tens of iterations. Extensive experiments are conducted under different lighting conditions to evaluate FNDI in comparison with existing non-darkroom methods and the classical speckle correlation method. The results demonstrate that FNDI is effective and efficient, making it highly attractive for practical scattering imaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.