Abstract
This research investigates hashtag suggestions in a heterogeneous and huge social network, as well as a cognitive-based deep learning solution based on distributed knowledge graphs. Community detection is first performed to find the connected communities in a vast and heterogeneous social network. The knowledge graph is subsequently generated for each discovered community, with an emphasis on expressing the semantic relationships among the Twitter platform’s user communities. Each community is trained with the embedded deep learning model. To recommend hashtags for the new user in the social network, the correlation between the tweets of such user and the knowledge graph of each community is explored to set the relevant communities of such user. The models of the relevant communities are used to infer the hashtags of the tweets of such users. We conducted extensive testing to demonstrate the usefulness of our methods on a variety of tweet collections. Experimental results show that the proposed approach is more efficient than the baseline approaches in terms of both runtime and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.