Abstract

Based on a representation in terms of determinants of the order 2N, we attempt to classify quasirational solutions of the one-dimensional focusing nonlinear Schrodinger equation and also formulate several conjectures about the structure of the solutions. These solutions can be written as a product of a t-dependent exponential times a quotient of two N(N+1)th degree polynomials in x and t depending on 2N−2 parameters. It is remarkable that if all parameters are equal to zero in this representation, then we recover the PN breathers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.