Abstract

Benzene adsorption behavior in a large family of 12R window zeolites (X, Y, EMT, Beta and LTL) has been examined by means of in-situ FTIR spectroscopy and correlated with the zeolite structure, the type and number of counter-ions, and the negative charge on framework oxygen atoms of zeolites. The effect of coadsorption of HCl, NH3 and CH3NH2 on the benzene location has also been studied. The present work illustrates that besides the benzene adsorption on counter ions of zeolites, the 12R windows could also be the adsorption sites for benzene. Upon adsorption of coadsorbates such as HCl, NH3 and CH3NH2, the migration of preadsorbed benzene molecules from one type of adsorption sites towards another, i.e. from 12R windows towards the cations for HCl and opposite direction for NH3 and CH3NH2, has been evidenced. The lack of adsorption of benzene on 12R windows of NaBeta even upon coadsorption of a series of basic molecules reveals that benzene adsorption on 12R windows is most likely governed by a molecular recognition effect where benzene molecule and 12R window should have the adapted chemical and structural properties like in enzyme-substrate system and zeolites can be referred to as solid enzymes or zeo-enzymes. This paper indicates also that the adsorption properties of zeolites can be modified and accommodated by introduction of a co-adsorbate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.