Abstract

“Kirkendall voiding” in the interfacial Cu3Sn intermetallic compound is often observed in solder joints made between Sn-containing alloys and Cu interconnect pads, during extended thermal aging or electromigration testing. It is commonly believed that voids arise from the Kirkendall effect, i.e., the imbalance of diffusion fluxes of Cu and Sn atoms in Cu3Sn. However, recent studies have demonstrated that the propensity for voiding is greatly affected by the amount of organic impurities incorporated during Cu electroplating. The level of impurities was shown to depend on various electroplating parameters, such as current density, bath temperature, bath age, etc. In this study, a general picture is proposed to provide a better understanding of the effect of electroplating process parameters on Cu3Sn voiding. The picture correlates the level of impurity incorporation to (1) the applied electroplating overpotential, and (2) the crystallographic orientation of the Cu deposit. As a first-order approximation, the picture is supported by a variety of electroplating experiments, secondary-ion mass spectroscopy (SIMS), and x-ray diffraction (XRD) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.