Abstract

Several speculative visions are conjecturing on what 6G services will be able to offer at the horizon of 2030. Nevertheless, the 6G design process is at its preliminary stages. The reality today is that hardware, technologies and new materials required to effectively meet the unprecedented performance targets required for future 6G services and network operation, have not been designed, tested or even do not exist yet. Today, a solid vision on the cost-benefit trade-offs of machine learning and artificial intelligence support for 6G network and services operation optimization is missing. This includes the possible support from hardware efficiency, operation effectiveness and, the immeasurable cost due to data acquisition-transfer-processing. The contribution of this paper is three-fold. This is the first paper deriving crucial 6G key performance indicators on hardware and technology design. Second, we present a new hardware technologies design methodology conceived to enable the effective software-hardware components integration required to meet the challenging performance envisioned for future 6G networks. Third, we suggest a paradigm shift towards goal-oriented and semantic communications, in which a totally new opportunity of joint design of hardware, artificial intelligence and effective communication is offered. The proposed vision is consolidated by our recent results on hardware, technology and machine learning performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.