Abstract

Monocular depth estimation methods have achieved excellent robustness on diverse scenes, usually by predicting affine-invariant depth, up to an unknown scale and shift, rather than metric depth in that it is much easier to collect large-scale affine-invariant depth training data. However, in some video-based scenarios such as video depth estimation and 3D scene reconstruction, the unknown scale and shift residing in per-frame prediction may cause the predicted depth to be inconsistent. To tackle this problem, we propose a locally weighted linear regression method to recover the scale and shift map with very sparse anchor points, which ensures the consistency along consecutive frames. Extensive experiments show that our method can drop the Rel error (relative error) of existing state-of-the-art approaches significantly over several zero-shot benchmarks. Besides, we merge 6.3 million RGBD images to train robust depth models. By locally recovering scale and shift, our produced ResNet50-backbone model even outperforms the state-of-the-art DPT ViT-Large model. Combined with geometry-based reconstruction methods, we formulate a new dense 3D scene reconstruction pipeline, which benefits from both the scale consistency of sparse points and the robustness of monocular methods. By performing simple per-frame prediction over a video, the accurate 3D scene geometry can be recovered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call