Abstract

A combination of two online sample concentration techniques, large-volume sample stacking with an electroosmotic flow pump (LVSEP) and field-amplified sample injection (FASI), was investigated in CE to achieve highly sensitive oligosaccharide analysis. In CE with LVSEP-FASI, analytes injected throughout the capillary were concentrated on the basis of LVSEP, followed by an electrokinetic introduction of concentrated analytes from the inlet vial by the FASI mechanism. After switching the inlet vial solution from the sample to running buffer, the concentrated analytes were then separated by CZE. In the present LVSEP-FASI-CZE, pressure was applied to the capillary inlet until the inlet vial solution was exchanged. The applied pressure generated a counterflow against the EOF. It kept the stacked sample zone within the capillary, minimizing loss of concentrated analytes. Fluorescein was first analyzed by LVSEP-FASI-CZE to optimize preconcentration condition. Up to 110 000-fold sensitivity increase was obtained with 200 μL of sample, compared to normal CZE with sample injection of 0.3psi for 3 s (ca. 1.7 nL). From the results, the pressure application improved the efficiency of the FASI-mode concentration significantly at total concentration time longer than 10 min. In the analysis of maltoheptaose, a 10 000-fold sensitivity increase was achieved, which is the highest concentration efficiency ever reported in CE of oligosaccharides. The relative standard deviations of the detection time and peak height were 2.4 and 11%, respectively. In the analysis of glucose oligomer, up to 8600-fold sensitivity increases were achieved without reducing the separation performance of conventional CZE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.