Abstract

The three-dimensional (3D) orthogonal interlocked fabric contains through-the-thickness rein-forcement in order to enhance the interlaminar fracture toughness of the composite. The interlaminar fracture toughness of a carbon-epoxy orthogonal interlocked fabric composite was experimentally determined by use of the recently developed tabbed double cantilever beam specimen. The data reduction methods applicable to these tests and materials and the interpretation of the results were discussed. The results of critical strain energy release rate,GIc, were compared to those of a two-dimensional (2D) laminate having the same in-plane structure. The energy-dissipating crack propagation processes were described. The in-plane fracture toughness of the 3D fabric was experimentally measured and compared to that of the 2D laminate. The through-the-thickness fibres were found to create a ten-fold increase in interlaminar toughness, and a 25% improvement in the in-plane fracture toughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call