Abstract
The three-dimensional (3D) orthogonal interlocked fabric contains through-the-thickness rein-forcement in order to enhance the interlaminar fracture toughness of the composite. The interlaminar fracture toughness of a carbon-epoxy orthogonal interlocked fabric composite was experimentally determined by use of the recently developed tabbed double cantilever beam specimen. The data reduction methods applicable to these tests and materials and the interpretation of the results were discussed. The results of critical strain energy release rate,GIc, were compared to those of a two-dimensional (2D) laminate having the same in-plane structure. The energy-dissipating crack propagation processes were described. The in-plane fracture toughness of the 3D fabric was experimentally measured and compared to that of the 2D laminate. The through-the-thickness fibres were found to create a ten-fold increase in interlaminar toughness, and a 25% improvement in the in-plane fracture toughness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.