Abstract

AbstractThe toughening mechanisms of polypropylene filled with elastomer and calcium carbonate (CaCO3) particles were studied. Polypropylene/elastomer/CaCO3 composites were prepared on a twin‐screw extruder with a particle concentration of 0–32 vol %. The experiments included tensile tests, notched Izod impact tests, scanning electron microscopy, and dynamic mechanical analysis. Scanning electron microscopy showed that the elastomer and CaCO3 particles dispersed separately in the matrix. The modulus of the composites increased, whereas the yield stress decreased with the filler concentration. The impact resistance showed a large improvement with the CaCO3 concentration. At the same composition (80/10/10 w/w/w), three types of CaCO3 particles with average diameters of 0.05, 0.6, and 1.0 μm improved the impact fracture energies comparatively. The encapsulation structure of the filler by the grafting elastomer had a detrimental effect on the impact properties because of the strong adhesion between the elastomer and filler and the increasing ligament thickness. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1113–1123, 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.