Abstract
Liquid polybutadiene rubber (LPB) was blended with poly(lactic acid) (PLA) through reactive and non-reactive routes to enhance the toughness of the PLA. The reactively blended PLA (PBR10) was prepared by melt blending the PLA with the LPB in the presence of dicumyl peroxide (DCP), a radical initiator, while the PB10 was just melt blended without the DCP. Fourier transform infrared (FTIR) spectra and wide-angle X-ray diffraction (WAXD) patterns were used to study the molecular structure of the blends. Properties were investigated through universal testing machine (UTM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM) analysis, and rheological measurements. The results indicated that the radical crosslinking by the DCP could increase the compatibility between the PLA and LPB and disperse the rubber particles at the nanoscale in the PLA matrix. As a result, the toughness and melt viscosity of the PLA was significantly enhanced through the reactive blending, which is promising for the practical application of the modified PLA in the area of packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.