Abstract

A modular approach for the design of two-component supramolecular polymer (SMP) networks is reported. A series of materials was prepared by blending two (macro)monomers based on trifunctional poly(propylene oxide) (PPO) cores that were end-functionalized with hydrogen-bonding 2-ureido-4[1H]pyrimidinone (UPy) groups. One monomer was based on a PPO core with a number-average molecular weight (Mn) of 440 g mol-1. The SMP formed by this building block is a glassy, brittle material with a glass transition temperature (Tg) of about 86 °C. The second monomer featured a PPO core with an Mn of 3000 g mol-1. The SMP formed by this building block adopts a microphase-segregated morphology that features a rubbery phase with a Tg of -58 °C and crystalline domains formed by the UPy assemblies, which act as physical cross-links and melt around 90-130 °C. Combining the two components allows access to microphase-segregated blends comprised of a rubbery phase constituted by the high-Mn cores, a glassy phase formed by the low-Mn component, and a crystalline phase formed by UPy groups. This allowed tailoring of the mechanical properties and afforded materials with storage moduli of 37-609 MPa, tensile strengths of 2.0-5.4 MPa, and melt viscosities of as low as 11 Pa s at 140 °C. The materials can be used as reversible adhesives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call