Abstract

2,2-Bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine)propane (BA-a) is blended with oligomers of polyarylsulfone (PSU) and polyarylethersulfone (PES) of different low/intermediate molecular weights (3000–12 000 g mol–1) and terminal functionality (chloro-, hydroxyl- or benzoxazinyl- (Bz)). Fracture toughness (KIC) is observed to increase from 0.8 MPa m0.5 for cured BA-a to 1 MPa m0.5 with the incorporation of 10 wt % PSU-Bz (12 000 g mol–1). Generally, greater improvements in KIC are observed for the PES oligomers compared with the PSU oligomers of equivalent molecular weight. The terminal functionality of the thermoplastic has a lesser effect on improving toughness than increasing the molecular weight or the nature of the polymer backbone. Surface analysis of the fractured surfaces show greater phase separation and crack pinning in the PES toughened system. Where crack pinning is less obvious, as in the case of hydroxyl-terminated PES (of 6000 g mol–1), this coincides with a drop in fracture toughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.