Abstract

Mullite matrix composites reinforced by SiC particles and Y-TZP, were fabricated by hot-pressing. The effects of adding SiC particles and Y-TZP to mullite or mullite-based materials on properties and toughening mechanisms in the composites were investigated. Crack deflection is proposed as the principal toughening mechanism, produced by the addition of SiC particles. Transformation and microcrack toughening are the two main toughening mechanisms caused by Y-TZP addition. However, the magnitude of their contribution varied with increasing Y-TZP addition. With low Y-TZP addition, the transformation toughening dominated, while at a higher Y-TZP content, the microcrack toughening was dominant. The simultaneous addition of SiC particles and Y-TZP to mullite resulted in higher increases in both flexural strength and fracture toughness, than the simple sum of those obtained by the separate processes. It appears that the two toughening processes were coupled, thereby leading to synergistic toughening and strengthening effects in the mullite composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.