Abstract

Recently, it has been found experimentally that hydrated nacre exhibits a nonlinear mechanical response. While mechanical nonlinearity has been shown to be important in other biological structures, such as spider webs, the implications of mechanical nonlinearity in nacre have not been explored. Here, we show that the nonlinear mechanical response of nacre can be reproduced by an analytical model, which reflects a nacre-like layered structure, consisting of linear-elastic hard sheets glued together by weakly nonlinear-elastic soft sheets. We develop scaling analysis on this analytical model, and perform numerical simulations using a lattice model, which is a discrete counterpart of the analytical model. Unexpectedly, we find the weak nonlinearity in the soft component significantly contributes to enhancing toughness by redistributing the stress at a crack tip over a wider area. Beyond demonstrating a mechanism that explains the unusual properties of biological nacre, this study points to a general design principle for constructing tough composites using weak nonlinearity, and is useful as a guiding principle to develop artificial layered structures mimicking nacre.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call